Numerical determination of the susceptibility caused geometric distortions in magnetic resonance imaging
نویسندگان
چکیده
The goal of this work is the design of highly accurate surgical navigation methods purely based on magnetic resonance imaging. In this context we numerically examine the geometrical distortions which occur in magnetic resonance imaging. We extend an existing method for computing magnitude and direction of distortions for any internal point. In particular, a multi-grid approach for a fast and efficient calculation of the static magnetic field throughout the imaging volume is presented and compared to the analytical solution for simple geometries. We found that shifts in the range of up to 2.5 mm occur in MRI of femur bones with 1.5 Tesla. Our new method was implemented and has been found capable of accurately correcting for geometrical distortions within reasonable computing times. In particular, we show that the registration accuracy for mutual information (MI) based MR-CT fusion can be much improved. Thus the value of the optimization functional in MI registration for MR-CT substantially increases after our distortion correction.
منابع مشابه
Fabrication of New 3D Phantom for Measuring Geometric Distortion in Magnetic Resonance Imaging System
Introduction: Geometric distortion is a major shortcoming of magnetic resonance imaging (MRI), which has an important influence on the accuracy of volumetric measurements, an important parameter in neurology and oncology. Our goal is to design and construct a new three- dimensional phantom using a 3D printer in order to measure geometric distortion and its reproducibility in...
متن کاملReduction of geometric and intensity distortions in echo-planar imaging using a multireference scan.
Echo-planar imaging (EPI) is very sensitive to patient-induced field inhomogeneity caused by susceptibility changes between different anatomical regions. This results in geometric and intensity distortions in the image, especially near tissue/air and tissue/bone interfaces. A new approach is presented to reduce geometric and intensity distortions in EPI. A phase-encoded multireference scan is u...
متن کاملFabrication of New 3D Phantom for the measurement of Geometric Distortion in Magnetic Resonance Imaging System
Introduction: Geometric distortion, an important parameter in neurology and oncology. The current study aimed to design and construct a new three-dimensional (3D) phantom using a 3D printer in order to measure geometric distortion and its 3D reproducibility. Material and Methods: In this study, a new phantom ...
متن کاملGeometric distortion evaluation of magnetic resonance images by a new large field of view phantom for magnetic resonance based radiotherapy purposes
Background: The magnetic resonance imaging (MRI)-based radiotherapy planning method have been considered in recent years because of the advantages of MRI and the problems of planning with two images modality. The first step in MRI-based radiotherapy is to evaluate magnetic resonance (MR) images geometric distortion. Therefore, the present study aimed to evaluate system related geometric distort...
متن کاملThe Computation of MR Image Distortions Caused by Tissue Susceptibility Using the Boundary Element M - Medical Imaging, IEEE Transactions on
Absh-uctStatic field inhomogeneity in magnetic resonance (MR) imaging produces geometrical distortions which restrict the clinical applicability of MR images, e.g., for planning of precision radiotherapy. The purpose of this paper is to describe a method to compute distortions which are caused by the difference in magnetic susceptibility between the scanned object and the surrounding air. Such ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Medical image analysis
دوره 7 3 شماره
صفحات -
تاریخ انتشار 2003